Bullet Collision Detection & Physics Library
btDantzigLCP.cpp
Go to the documentation of this file.
1 /*************************************************************************
2 * *
3 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
4 * All rights reserved. Email: russ@q12.org Web: www.q12.org *
5 * *
6 * This library is free software; you can redistribute it and/or *
7 * modify it under the terms of EITHER: *
8 * (1) The GNU Lesser General Public License as published by the Free *
9 * Software Foundation; either version 2.1 of the License, or (at *
10 * your option) any later version. The text of the GNU Lesser *
11 * General Public License is included with this library in the *
12 * file LICENSE.TXT. *
13 * (2) The BSD-style license that is included with this library in *
14 * the file LICENSE-BSD.TXT. *
15 * *
16 * This library is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
19 * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
20 * *
21 *************************************************************************/
22 
23 /*
24 
25 
26 THE ALGORITHM
27 -------------
28 
29 solve A*x = b+w, with x and w subject to certain LCP conditions.
30 each x(i),w(i) must lie on one of the three line segments in the following
31 diagram. each line segment corresponds to one index set :
32 
33  w(i)
34  /|\ | :
35  | | :
36  | |i in N :
37  w>0 | |state[i]=0 :
38  | | :
39  | | : i in C
40  w=0 + +-----------------------+
41  | : |
42  | : |
43  w<0 | : |i in N
44  | : |state[i]=1
45  | : |
46  | : |
47  +-------|-----------|-----------|----------> x(i)
48  lo 0 hi
49 
50 the Dantzig algorithm proceeds as follows:
51  for i=1:n
52  * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
53  negative towards the line. as this is done, the other (x(j),w(j))
54  for j<i are constrained to be on the line. if any (x,w) reaches the
55  end of a line segment then it is switched between index sets.
56  * i is added to the appropriate index set depending on what line segment
57  it hits.
58 
59 we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
60 simpler, because the starting point for x(i),w(i) is always on the dotted
61 line x=0 and x will only ever increase in one direction, so it can only hit
62 two out of the three line segments.
63 
64 
65 NOTES
66 -----
67 
68 this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
69 the implementation is split into an LCP problem object (btLCP) and an LCP
70 driver function. most optimization occurs in the btLCP object.
71 
72 a naive implementation of the algorithm requires either a lot of data motion
73 or a lot of permutation-array lookup, because we are constantly re-ordering
74 rows and columns. to avoid this and make a more optimized algorithm, a
75 non-trivial data structure is used to represent the matrix A (this is
76 implemented in the fast version of the btLCP object).
77 
78 during execution of this algorithm, some indexes in A are clamped (set C),
79 some are non-clamped (set N), and some are "don't care" (where x=0).
80 A,x,b,w (and other problem vectors) are permuted such that the clamped
81 indexes are first, the unclamped indexes are next, and the don't-care
82 indexes are last. this permutation is recorded in the array `p'.
83 initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
84 the corresponding elements of p are swapped.
85 
86 because the C and N elements are grouped together in the rows of A, we can do
87 lots of work with a fast dot product function. if A,x,etc were not permuted
88 and we only had a permutation array, then those dot products would be much
89 slower as we would have a permutation array lookup in some inner loops.
90 
91 A is accessed through an array of row pointers, so that element (i,j) of the
92 permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
93 we still have to actually move the data.
94 
95 during execution of this algorithm we maintain an L*D*L' factorization of
96 the clamped submatrix of A (call it `AC') which is the top left nC*nC
97 submatrix of A. there are two ways we could arrange the rows/columns in AC.
98 
99 (1) AC is always permuted such that L*D*L' = AC. this causes a problem
100 when a row/column is removed from C, because then all the rows/columns of A
101 between the deleted index and the end of C need to be rotated downward.
102 this results in a lot of data motion and slows things down.
103 (2) L*D*L' is actually a factorization of a *permutation* of AC (which is
104 itself a permutation of the underlying A). this is what we do - the
105 permutation is recorded in the vector C. call this permutation A[C,C].
106 when a row/column is removed from C, all we have to do is swap two
107 rows/columns and manipulate C.
108 
109 */
110 
111 
112 #include "btDantzigLCP.h"
113 
114 #include <string.h>//memcpy
115 
116 bool s_error = false;
117 
118 //***************************************************************************
119 // code generation parameters
120 
121 
122 #define btLCP_FAST // use fast btLCP object
123 
124 // option 1 : matrix row pointers (less data copying)
125 #define BTROWPTRS
126 #define BTATYPE btScalar **
127 #define BTAROW(i) (m_A[i])
128 
129 // option 2 : no matrix row pointers (slightly faster inner loops)
130 //#define NOROWPTRS
131 //#define BTATYPE btScalar *
132 //#define BTAROW(i) (m_A+(i)*m_nskip)
133 
134 #define BTNUB_OPTIMIZATIONS
135 
136 
137 
138 /* solve L*X=B, with B containing 1 right hand sides.
139  * L is an n*n lower triangular matrix with ones on the diagonal.
140  * L is stored by rows and its leading dimension is lskip.
141  * B is an n*1 matrix that contains the right hand sides.
142  * B is stored by columns and its leading dimension is also lskip.
143  * B is overwritten with X.
144  * this processes blocks of 2*2.
145  * if this is in the factorizer source file, n must be a multiple of 2.
146  */
147 
148 static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
149 {
150  /* declare variables - Z matrix, p and q vectors, etc */
151  btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
152  const btScalar *ell;
153  int i,j;
154  /* compute all 2 x 1 blocks of X */
155  for (i=0; i < n; i+=2) {
156  /* compute all 2 x 1 block of X, from rows i..i+2-1 */
157  /* set the Z matrix to 0 */
158  Z11=0;
159  Z21=0;
160  ell = L + i*lskip1;
161  ex = B;
162  /* the inner loop that computes outer products and adds them to Z */
163  for (j=i-2; j >= 0; j -= 2) {
164  /* compute outer product and add it to the Z matrix */
165  p1=ell[0];
166  q1=ex[0];
167  m11 = p1 * q1;
168  p2=ell[lskip1];
169  m21 = p2 * q1;
170  Z11 += m11;
171  Z21 += m21;
172  /* compute outer product and add it to the Z matrix */
173  p1=ell[1];
174  q1=ex[1];
175  m11 = p1 * q1;
176  p2=ell[1+lskip1];
177  m21 = p2 * q1;
178  /* advance pointers */
179  ell += 2;
180  ex += 2;
181  Z11 += m11;
182  Z21 += m21;
183  /* end of inner loop */
184  }
185  /* compute left-over iterations */
186  j += 2;
187  for (; j > 0; j--) {
188  /* compute outer product and add it to the Z matrix */
189  p1=ell[0];
190  q1=ex[0];
191  m11 = p1 * q1;
192  p2=ell[lskip1];
193  m21 = p2 * q1;
194  /* advance pointers */
195  ell += 1;
196  ex += 1;
197  Z11 += m11;
198  Z21 += m21;
199  }
200  /* finish computing the X(i) block */
201  Z11 = ex[0] - Z11;
202  ex[0] = Z11;
203  p1 = ell[lskip1];
204  Z21 = ex[1] - Z21 - p1*Z11;
205  ex[1] = Z21;
206  /* end of outer loop */
207  }
208 }
209 
210 /* solve L*X=B, with B containing 2 right hand sides.
211  * L is an n*n lower triangular matrix with ones on the diagonal.
212  * L is stored by rows and its leading dimension is lskip.
213  * B is an n*2 matrix that contains the right hand sides.
214  * B is stored by columns and its leading dimension is also lskip.
215  * B is overwritten with X.
216  * this processes blocks of 2*2.
217  * if this is in the factorizer source file, n must be a multiple of 2.
218  */
219 
220 static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
221 {
222  /* declare variables - Z matrix, p and q vectors, etc */
223  btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
224  const btScalar *ell;
225  int i,j;
226  /* compute all 2 x 2 blocks of X */
227  for (i=0; i < n; i+=2) {
228  /* compute all 2 x 2 block of X, from rows i..i+2-1 */
229  /* set the Z matrix to 0 */
230  Z11=0;
231  Z12=0;
232  Z21=0;
233  Z22=0;
234  ell = L + i*lskip1;
235  ex = B;
236  /* the inner loop that computes outer products and adds them to Z */
237  for (j=i-2; j >= 0; j -= 2) {
238  /* compute outer product and add it to the Z matrix */
239  p1=ell[0];
240  q1=ex[0];
241  m11 = p1 * q1;
242  q2=ex[lskip1];
243  m12 = p1 * q2;
244  p2=ell[lskip1];
245  m21 = p2 * q1;
246  m22 = p2 * q2;
247  Z11 += m11;
248  Z12 += m12;
249  Z21 += m21;
250  Z22 += m22;
251  /* compute outer product and add it to the Z matrix */
252  p1=ell[1];
253  q1=ex[1];
254  m11 = p1 * q1;
255  q2=ex[1+lskip1];
256  m12 = p1 * q2;
257  p2=ell[1+lskip1];
258  m21 = p2 * q1;
259  m22 = p2 * q2;
260  /* advance pointers */
261  ell += 2;
262  ex += 2;
263  Z11 += m11;
264  Z12 += m12;
265  Z21 += m21;
266  Z22 += m22;
267  /* end of inner loop */
268  }
269  /* compute left-over iterations */
270  j += 2;
271  for (; j > 0; j--) {
272  /* compute outer product and add it to the Z matrix */
273  p1=ell[0];
274  q1=ex[0];
275  m11 = p1 * q1;
276  q2=ex[lskip1];
277  m12 = p1 * q2;
278  p2=ell[lskip1];
279  m21 = p2 * q1;
280  m22 = p2 * q2;
281  /* advance pointers */
282  ell += 1;
283  ex += 1;
284  Z11 += m11;
285  Z12 += m12;
286  Z21 += m21;
287  Z22 += m22;
288  }
289  /* finish computing the X(i) block */
290  Z11 = ex[0] - Z11;
291  ex[0] = Z11;
292  Z12 = ex[lskip1] - Z12;
293  ex[lskip1] = Z12;
294  p1 = ell[lskip1];
295  Z21 = ex[1] - Z21 - p1*Z11;
296  ex[1] = Z21;
297  Z22 = ex[1+lskip1] - Z22 - p1*Z12;
298  ex[1+lskip1] = Z22;
299  /* end of outer loop */
300  }
301 }
302 
303 
304 void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
305 {
306  int i,j;
307  btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
308  if (n < 1) return;
309 
310  for (i=0; i<=n-2; i += 2) {
311  /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
312  btSolveL1_2 (A,A+i*nskip1,i,nskip1);
313  /* scale the elements in a 2 x i block at A(i,0), and also */
314  /* compute Z = the outer product matrix that we'll need. */
315  Z11 = 0;
316  Z21 = 0;
317  Z22 = 0;
318  ell = A+i*nskip1;
319  dee = d;
320  for (j=i-6; j >= 0; j -= 6) {
321  p1 = ell[0];
322  p2 = ell[nskip1];
323  dd = dee[0];
324  q1 = p1*dd;
325  q2 = p2*dd;
326  ell[0] = q1;
327  ell[nskip1] = q2;
328  m11 = p1*q1;
329  m21 = p2*q1;
330  m22 = p2*q2;
331  Z11 += m11;
332  Z21 += m21;
333  Z22 += m22;
334  p1 = ell[1];
335  p2 = ell[1+nskip1];
336  dd = dee[1];
337  q1 = p1*dd;
338  q2 = p2*dd;
339  ell[1] = q1;
340  ell[1+nskip1] = q2;
341  m11 = p1*q1;
342  m21 = p2*q1;
343  m22 = p2*q2;
344  Z11 += m11;
345  Z21 += m21;
346  Z22 += m22;
347  p1 = ell[2];
348  p2 = ell[2+nskip1];
349  dd = dee[2];
350  q1 = p1*dd;
351  q2 = p2*dd;
352  ell[2] = q1;
353  ell[2+nskip1] = q2;
354  m11 = p1*q1;
355  m21 = p2*q1;
356  m22 = p2*q2;
357  Z11 += m11;
358  Z21 += m21;
359  Z22 += m22;
360  p1 = ell[3];
361  p2 = ell[3+nskip1];
362  dd = dee[3];
363  q1 = p1*dd;
364  q2 = p2*dd;
365  ell[3] = q1;
366  ell[3+nskip1] = q2;
367  m11 = p1*q1;
368  m21 = p2*q1;
369  m22 = p2*q2;
370  Z11 += m11;
371  Z21 += m21;
372  Z22 += m22;
373  p1 = ell[4];
374  p2 = ell[4+nskip1];
375  dd = dee[4];
376  q1 = p1*dd;
377  q2 = p2*dd;
378  ell[4] = q1;
379  ell[4+nskip1] = q2;
380  m11 = p1*q1;
381  m21 = p2*q1;
382  m22 = p2*q2;
383  Z11 += m11;
384  Z21 += m21;
385  Z22 += m22;
386  p1 = ell[5];
387  p2 = ell[5+nskip1];
388  dd = dee[5];
389  q1 = p1*dd;
390  q2 = p2*dd;
391  ell[5] = q1;
392  ell[5+nskip1] = q2;
393  m11 = p1*q1;
394  m21 = p2*q1;
395  m22 = p2*q2;
396  Z11 += m11;
397  Z21 += m21;
398  Z22 += m22;
399  ell += 6;
400  dee += 6;
401  }
402  /* compute left-over iterations */
403  j += 6;
404  for (; j > 0; j--) {
405  p1 = ell[0];
406  p2 = ell[nskip1];
407  dd = dee[0];
408  q1 = p1*dd;
409  q2 = p2*dd;
410  ell[0] = q1;
411  ell[nskip1] = q2;
412  m11 = p1*q1;
413  m21 = p2*q1;
414  m22 = p2*q2;
415  Z11 += m11;
416  Z21 += m21;
417  Z22 += m22;
418  ell++;
419  dee++;
420  }
421  /* solve for diagonal 2 x 2 block at A(i,i) */
422  Z11 = ell[0] - Z11;
423  Z21 = ell[nskip1] - Z21;
424  Z22 = ell[1+nskip1] - Z22;
425  dee = d + i;
426  /* factorize 2 x 2 block Z,dee */
427  /* factorize row 1 */
428  dee[0] = btRecip(Z11);
429  /* factorize row 2 */
430  sum = 0;
431  q1 = Z21;
432  q2 = q1 * dee[0];
433  Z21 = q2;
434  sum += q1*q2;
435  dee[1] = btRecip(Z22 - sum);
436  /* done factorizing 2 x 2 block */
437  ell[nskip1] = Z21;
438  }
439  /* compute the (less than 2) rows at the bottom */
440  switch (n-i) {
441  case 0:
442  break;
443 
444  case 1:
445  btSolveL1_1 (A,A+i*nskip1,i,nskip1);
446  /* scale the elements in a 1 x i block at A(i,0), and also */
447  /* compute Z = the outer product matrix that we'll need. */
448  Z11 = 0;
449  ell = A+i*nskip1;
450  dee = d;
451  for (j=i-6; j >= 0; j -= 6) {
452  p1 = ell[0];
453  dd = dee[0];
454  q1 = p1*dd;
455  ell[0] = q1;
456  m11 = p1*q1;
457  Z11 += m11;
458  p1 = ell[1];
459  dd = dee[1];
460  q1 = p1*dd;
461  ell[1] = q1;
462  m11 = p1*q1;
463  Z11 += m11;
464  p1 = ell[2];
465  dd = dee[2];
466  q1 = p1*dd;
467  ell[2] = q1;
468  m11 = p1*q1;
469  Z11 += m11;
470  p1 = ell[3];
471  dd = dee[3];
472  q1 = p1*dd;
473  ell[3] = q1;
474  m11 = p1*q1;
475  Z11 += m11;
476  p1 = ell[4];
477  dd = dee[4];
478  q1 = p1*dd;
479  ell[4] = q1;
480  m11 = p1*q1;
481  Z11 += m11;
482  p1 = ell[5];
483  dd = dee[5];
484  q1 = p1*dd;
485  ell[5] = q1;
486  m11 = p1*q1;
487  Z11 += m11;
488  ell += 6;
489  dee += 6;
490  }
491  /* compute left-over iterations */
492  j += 6;
493  for (; j > 0; j--) {
494  p1 = ell[0];
495  dd = dee[0];
496  q1 = p1*dd;
497  ell[0] = q1;
498  m11 = p1*q1;
499  Z11 += m11;
500  ell++;
501  dee++;
502  }
503  /* solve for diagonal 1 x 1 block at A(i,i) */
504  Z11 = ell[0] - Z11;
505  dee = d + i;
506  /* factorize 1 x 1 block Z,dee */
507  /* factorize row 1 */
508  dee[0] = btRecip(Z11);
509  /* done factorizing 1 x 1 block */
510  break;
511 
512  //default: *((char*)0)=0; /* this should never happen! */
513  }
514 }
515 
516 /* solve L*X=B, with B containing 1 right hand sides.
517  * L is an n*n lower triangular matrix with ones on the diagonal.
518  * L is stored by rows and its leading dimension is lskip.
519  * B is an n*1 matrix that contains the right hand sides.
520  * B is stored by columns and its leading dimension is also lskip.
521  * B is overwritten with X.
522  * this processes blocks of 4*4.
523  * if this is in the factorizer source file, n must be a multiple of 4.
524  */
525 
526 void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
527 {
528  /* declare variables - Z matrix, p and q vectors, etc */
529  btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
530  const btScalar *ell;
531  int lskip2,lskip3,i,j;
532  /* compute lskip values */
533  lskip2 = 2*lskip1;
534  lskip3 = 3*lskip1;
535  /* compute all 4 x 1 blocks of X */
536  for (i=0; i <= n-4; i+=4) {
537  /* compute all 4 x 1 block of X, from rows i..i+4-1 */
538  /* set the Z matrix to 0 */
539  Z11=0;
540  Z21=0;
541  Z31=0;
542  Z41=0;
543  ell = L + i*lskip1;
544  ex = B;
545  /* the inner loop that computes outer products and adds them to Z */
546  for (j=i-12; j >= 0; j -= 12) {
547  /* load p and q values */
548  p1=ell[0];
549  q1=ex[0];
550  p2=ell[lskip1];
551  p3=ell[lskip2];
552  p4=ell[lskip3];
553  /* compute outer product and add it to the Z matrix */
554  Z11 += p1 * q1;
555  Z21 += p2 * q1;
556  Z31 += p3 * q1;
557  Z41 += p4 * q1;
558  /* load p and q values */
559  p1=ell[1];
560  q1=ex[1];
561  p2=ell[1+lskip1];
562  p3=ell[1+lskip2];
563  p4=ell[1+lskip3];
564  /* compute outer product and add it to the Z matrix */
565  Z11 += p1 * q1;
566  Z21 += p2 * q1;
567  Z31 += p3 * q1;
568  Z41 += p4 * q1;
569  /* load p and q values */
570  p1=ell[2];
571  q1=ex[2];
572  p2=ell[2+lskip1];
573  p3=ell[2+lskip2];
574  p4=ell[2+lskip3];
575  /* compute outer product and add it to the Z matrix */
576  Z11 += p1 * q1;
577  Z21 += p2 * q1;
578  Z31 += p3 * q1;
579  Z41 += p4 * q1;
580  /* load p and q values */
581  p1=ell[3];
582  q1=ex[3];
583  p2=ell[3+lskip1];
584  p3=ell[3+lskip2];
585  p4=ell[3+lskip3];
586  /* compute outer product and add it to the Z matrix */
587  Z11 += p1 * q1;
588  Z21 += p2 * q1;
589  Z31 += p3 * q1;
590  Z41 += p4 * q1;
591  /* load p and q values */
592  p1=ell[4];
593  q1=ex[4];
594  p2=ell[4+lskip1];
595  p3=ell[4+lskip2];
596  p4=ell[4+lskip3];
597  /* compute outer product and add it to the Z matrix */
598  Z11 += p1 * q1;
599  Z21 += p2 * q1;
600  Z31 += p3 * q1;
601  Z41 += p4 * q1;
602  /* load p and q values */
603  p1=ell[5];
604  q1=ex[5];
605  p2=ell[5+lskip1];
606  p3=ell[5+lskip2];
607  p4=ell[5+lskip3];
608  /* compute outer product and add it to the Z matrix */
609  Z11 += p1 * q1;
610  Z21 += p2 * q1;
611  Z31 += p3 * q1;
612  Z41 += p4 * q1;
613  /* load p and q values */
614  p1=ell[6];
615  q1=ex[6];
616  p2=ell[6+lskip1];
617  p3=ell[6+lskip2];
618  p4=ell[6+lskip3];
619  /* compute outer product and add it to the Z matrix */
620  Z11 += p1 * q1;
621  Z21 += p2 * q1;
622  Z31 += p3 * q1;
623  Z41 += p4 * q1;
624  /* load p and q values */
625  p1=ell[7];
626  q1=ex[7];
627  p2=ell[7+lskip1];
628  p3=ell[7+lskip2];
629  p4=ell[7+lskip3];
630  /* compute outer product and add it to the Z matrix */
631  Z11 += p1 * q1;
632  Z21 += p2 * q1;
633  Z31 += p3 * q1;
634  Z41 += p4 * q1;
635  /* load p and q values */
636  p1=ell[8];
637  q1=ex[8];
638  p2=ell[8+lskip1];
639  p3=ell[8+lskip2];
640  p4=ell[8+lskip3];
641  /* compute outer product and add it to the Z matrix */
642  Z11 += p1 * q1;
643  Z21 += p2 * q1;
644  Z31 += p3 * q1;
645  Z41 += p4 * q1;
646  /* load p and q values */
647  p1=ell[9];
648  q1=ex[9];
649  p2=ell[9+lskip1];
650  p3=ell[9+lskip2];
651  p4=ell[9+lskip3];
652  /* compute outer product and add it to the Z matrix */
653  Z11 += p1 * q1;
654  Z21 += p2 * q1;
655  Z31 += p3 * q1;
656  Z41 += p4 * q1;
657  /* load p and q values */
658  p1=ell[10];
659  q1=ex[10];
660  p2=ell[10+lskip1];
661  p3=ell[10+lskip2];
662  p4=ell[10+lskip3];
663  /* compute outer product and add it to the Z matrix */
664  Z11 += p1 * q1;
665  Z21 += p2 * q1;
666  Z31 += p3 * q1;
667  Z41 += p4 * q1;
668  /* load p and q values */
669  p1=ell[11];
670  q1=ex[11];
671  p2=ell[11+lskip1];
672  p3=ell[11+lskip2];
673  p4=ell[11+lskip3];
674  /* compute outer product and add it to the Z matrix */
675  Z11 += p1 * q1;
676  Z21 += p2 * q1;
677  Z31 += p3 * q1;
678  Z41 += p4 * q1;
679  /* advance pointers */
680  ell += 12;
681  ex += 12;
682  /* end of inner loop */
683  }
684  /* compute left-over iterations */
685  j += 12;
686  for (; j > 0; j--) {
687  /* load p and q values */
688  p1=ell[0];
689  q1=ex[0];
690  p2=ell[lskip1];
691  p3=ell[lskip2];
692  p4=ell[lskip3];
693  /* compute outer product and add it to the Z matrix */
694  Z11 += p1 * q1;
695  Z21 += p2 * q1;
696  Z31 += p3 * q1;
697  Z41 += p4 * q1;
698  /* advance pointers */
699  ell += 1;
700  ex += 1;
701  }
702  /* finish computing the X(i) block */
703  Z11 = ex[0] - Z11;
704  ex[0] = Z11;
705  p1 = ell[lskip1];
706  Z21 = ex[1] - Z21 - p1*Z11;
707  ex[1] = Z21;
708  p1 = ell[lskip2];
709  p2 = ell[1+lskip2];
710  Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
711  ex[2] = Z31;
712  p1 = ell[lskip3];
713  p2 = ell[1+lskip3];
714  p3 = ell[2+lskip3];
715  Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
716  ex[3] = Z41;
717  /* end of outer loop */
718  }
719  /* compute rows at end that are not a multiple of block size */
720  for (; i < n; i++) {
721  /* compute all 1 x 1 block of X, from rows i..i+1-1 */
722  /* set the Z matrix to 0 */
723  Z11=0;
724  ell = L + i*lskip1;
725  ex = B;
726  /* the inner loop that computes outer products and adds them to Z */
727  for (j=i-12; j >= 0; j -= 12) {
728  /* load p and q values */
729  p1=ell[0];
730  q1=ex[0];
731  /* compute outer product and add it to the Z matrix */
732  Z11 += p1 * q1;
733  /* load p and q values */
734  p1=ell[1];
735  q1=ex[1];
736  /* compute outer product and add it to the Z matrix */
737  Z11 += p1 * q1;
738  /* load p and q values */
739  p1=ell[2];
740  q1=ex[2];
741  /* compute outer product and add it to the Z matrix */
742  Z11 += p1 * q1;
743  /* load p and q values */
744  p1=ell[3];
745  q1=ex[3];
746  /* compute outer product and add it to the Z matrix */
747  Z11 += p1 * q1;
748  /* load p and q values */
749  p1=ell[4];
750  q1=ex[4];
751  /* compute outer product and add it to the Z matrix */
752  Z11 += p1 * q1;
753  /* load p and q values */
754  p1=ell[5];
755  q1=ex[5];
756  /* compute outer product and add it to the Z matrix */
757  Z11 += p1 * q1;
758  /* load p and q values */
759  p1=ell[6];
760  q1=ex[6];
761  /* compute outer product and add it to the Z matrix */
762  Z11 += p1 * q1;
763  /* load p and q values */
764  p1=ell[7];
765  q1=ex[7];
766  /* compute outer product and add it to the Z matrix */
767  Z11 += p1 * q1;
768  /* load p and q values */
769  p1=ell[8];
770  q1=ex[8];
771  /* compute outer product and add it to the Z matrix */
772  Z11 += p1 * q1;
773  /* load p and q values */
774  p1=ell[9];
775  q1=ex[9];
776  /* compute outer product and add it to the Z matrix */
777  Z11 += p1 * q1;
778  /* load p and q values */
779  p1=ell[10];
780  q1=ex[10];
781  /* compute outer product and add it to the Z matrix */
782  Z11 += p1 * q1;
783  /* load p and q values */
784  p1=ell[11];
785  q1=ex[11];
786  /* compute outer product and add it to the Z matrix */
787  Z11 += p1 * q1;
788  /* advance pointers */
789  ell += 12;
790  ex += 12;
791  /* end of inner loop */
792  }
793  /* compute left-over iterations */
794  j += 12;
795  for (; j > 0; j--) {
796  /* load p and q values */
797  p1=ell[0];
798  q1=ex[0];
799  /* compute outer product and add it to the Z matrix */
800  Z11 += p1 * q1;
801  /* advance pointers */
802  ell += 1;
803  ex += 1;
804  }
805  /* finish computing the X(i) block */
806  Z11 = ex[0] - Z11;
807  ex[0] = Z11;
808  }
809 }
810 
811 /* solve L^T * x=b, with b containing 1 right hand side.
812  * L is an n*n lower triangular matrix with ones on the diagonal.
813  * L is stored by rows and its leading dimension is lskip.
814  * b is an n*1 matrix that contains the right hand side.
815  * b is overwritten with x.
816  * this processes blocks of 4.
817  */
818 
819 void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
820 {
821  /* declare variables - Z matrix, p and q vectors, etc */
822  btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
823  const btScalar *ell;
824  int lskip2,i,j;
825 // int lskip3;
826  /* special handling for L and B because we're solving L1 *transpose* */
827  L = L + (n-1)*(lskip1+1);
828  B = B + n-1;
829  lskip1 = -lskip1;
830  /* compute lskip values */
831  lskip2 = 2*lskip1;
832  //lskip3 = 3*lskip1;
833  /* compute all 4 x 1 blocks of X */
834  for (i=0; i <= n-4; i+=4) {
835  /* compute all 4 x 1 block of X, from rows i..i+4-1 */
836  /* set the Z matrix to 0 */
837  Z11=0;
838  Z21=0;
839  Z31=0;
840  Z41=0;
841  ell = L - i;
842  ex = B;
843  /* the inner loop that computes outer products and adds them to Z */
844  for (j=i-4; j >= 0; j -= 4) {
845  /* load p and q values */
846  p1=ell[0];
847  q1=ex[0];
848  p2=ell[-1];
849  p3=ell[-2];
850  p4=ell[-3];
851  /* compute outer product and add it to the Z matrix */
852  m11 = p1 * q1;
853  m21 = p2 * q1;
854  m31 = p3 * q1;
855  m41 = p4 * q1;
856  ell += lskip1;
857  Z11 += m11;
858  Z21 += m21;
859  Z31 += m31;
860  Z41 += m41;
861  /* load p and q values */
862  p1=ell[0];
863  q1=ex[-1];
864  p2=ell[-1];
865  p3=ell[-2];
866  p4=ell[-3];
867  /* compute outer product and add it to the Z matrix */
868  m11 = p1 * q1;
869  m21 = p2 * q1;
870  m31 = p3 * q1;
871  m41 = p4 * q1;
872  ell += lskip1;
873  Z11 += m11;
874  Z21 += m21;
875  Z31 += m31;
876  Z41 += m41;
877  /* load p and q values */
878  p1=ell[0];
879  q1=ex[-2];
880  p2=ell[-1];
881  p3=ell[-2];
882  p4=ell[-3];
883  /* compute outer product and add it to the Z matrix */
884  m11 = p1 * q1;
885  m21 = p2 * q1;
886  m31 = p3 * q1;
887  m41 = p4 * q1;
888  ell += lskip1;
889  Z11 += m11;
890  Z21 += m21;
891  Z31 += m31;
892  Z41 += m41;
893  /* load p and q values */
894  p1=ell[0];
895  q1=ex[-3];
896  p2=ell[-1];
897  p3=ell[-2];
898  p4=ell[-3];
899  /* compute outer product and add it to the Z matrix */
900  m11 = p1 * q1;
901  m21 = p2 * q1;
902  m31 = p3 * q1;
903  m41 = p4 * q1;
904  ell += lskip1;
905  ex -= 4;
906  Z11 += m11;
907  Z21 += m21;
908  Z31 += m31;
909  Z41 += m41;
910  /* end of inner loop */
911  }
912  /* compute left-over iterations */
913  j += 4;
914  for (; j > 0; j--) {
915  /* load p and q values */
916  p1=ell[0];
917  q1=ex[0];
918  p2=ell[-1];
919  p3=ell[-2];
920  p4=ell[-3];
921  /* compute outer product and add it to the Z matrix */
922  m11 = p1 * q1;
923  m21 = p2 * q1;
924  m31 = p3 * q1;
925  m41 = p4 * q1;
926  ell += lskip1;
927  ex -= 1;
928  Z11 += m11;
929  Z21 += m21;
930  Z31 += m31;
931  Z41 += m41;
932  }
933  /* finish computing the X(i) block */
934  Z11 = ex[0] - Z11;
935  ex[0] = Z11;
936  p1 = ell[-1];
937  Z21 = ex[-1] - Z21 - p1*Z11;
938  ex[-1] = Z21;
939  p1 = ell[-2];
940  p2 = ell[-2+lskip1];
941  Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
942  ex[-2] = Z31;
943  p1 = ell[-3];
944  p2 = ell[-3+lskip1];
945  p3 = ell[-3+lskip2];
946  Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
947  ex[-3] = Z41;
948  /* end of outer loop */
949  }
950  /* compute rows at end that are not a multiple of block size */
951  for (; i < n; i++) {
952  /* compute all 1 x 1 block of X, from rows i..i+1-1 */
953  /* set the Z matrix to 0 */
954  Z11=0;
955  ell = L - i;
956  ex = B;
957  /* the inner loop that computes outer products and adds them to Z */
958  for (j=i-4; j >= 0; j -= 4) {
959  /* load p and q values */
960  p1=ell[0];
961  q1=ex[0];
962  /* compute outer product and add it to the Z matrix */
963  m11 = p1 * q1;
964  ell += lskip1;
965  Z11 += m11;
966  /* load p and q values */
967  p1=ell[0];
968  q1=ex[-1];
969  /* compute outer product and add it to the Z matrix */
970  m11 = p1 * q1;
971  ell += lskip1;
972  Z11 += m11;
973  /* load p and q values */
974  p1=ell[0];
975  q1=ex[-2];
976  /* compute outer product and add it to the Z matrix */
977  m11 = p1 * q1;
978  ell += lskip1;
979  Z11 += m11;
980  /* load p and q values */
981  p1=ell[0];
982  q1=ex[-3];
983  /* compute outer product and add it to the Z matrix */
984  m11 = p1 * q1;
985  ell += lskip1;
986  ex -= 4;
987  Z11 += m11;
988  /* end of inner loop */
989  }
990  /* compute left-over iterations */
991  j += 4;
992  for (; j > 0; j--) {
993  /* load p and q values */
994  p1=ell[0];
995  q1=ex[0];
996  /* compute outer product and add it to the Z matrix */
997  m11 = p1 * q1;
998  ell += lskip1;
999  ex -= 1;
1000  Z11 += m11;
1001  }
1002  /* finish computing the X(i) block */
1003  Z11 = ex[0] - Z11;
1004  ex[0] = Z11;
1005  }
1006 }
1007 
1008 
1009 
1010 void btVectorScale (btScalar *a, const btScalar *d, int n)
1011 {
1012  btAssert (a && d && n >= 0);
1013  for (int i=0; i<n; i++) {
1014  a[i] *= d[i];
1015  }
1016 }
1017 
1018 void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
1019 {
1020  btAssert (L && d && b && n > 0 && nskip >= n);
1021  btSolveL1 (L,b,n,nskip);
1022  btVectorScale (b,d,n);
1023  btSolveL1T (L,b,n,nskip);
1024 }
1025 
1026 
1027 
1028 //***************************************************************************
1029 
1030 // swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
1031 // A is nskip. this only references and swaps the lower triangle.
1032 // if `do_fast_row_swaps' is nonzero and row pointers are being used, then
1033 // rows will be swapped by exchanging row pointers. otherwise the data will
1034 // be copied.
1035 
1036 static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip,
1037  int do_fast_row_swaps)
1038 {
1039  btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
1040  nskip >= n && i1 < i2);
1041 
1042 # ifdef BTROWPTRS
1043  btScalar *A_i1 = A[i1];
1044  btScalar *A_i2 = A[i2];
1045  for (int i=i1+1; i<i2; ++i) {
1046  btScalar *A_i_i1 = A[i] + i1;
1047  A_i1[i] = *A_i_i1;
1048  *A_i_i1 = A_i2[i];
1049  }
1050  A_i1[i2] = A_i1[i1];
1051  A_i1[i1] = A_i2[i1];
1052  A_i2[i1] = A_i2[i2];
1053  // swap rows, by swapping row pointers
1054  if (do_fast_row_swaps) {
1055  A[i1] = A_i2;
1056  A[i2] = A_i1;
1057  }
1058  else {
1059  // Only swap till i2 column to match A plain storage variant.
1060  for (int k = 0; k <= i2; ++k) {
1061  btScalar tmp = A_i1[k];
1062  A_i1[k] = A_i2[k];
1063  A_i2[k] = tmp;
1064  }
1065  }
1066  // swap columns the hard way
1067  for (int j=i2+1; j<n; ++j) {
1068  btScalar *A_j = A[j];
1069  btScalar tmp = A_j[i1];
1070  A_j[i1] = A_j[i2];
1071  A_j[i2] = tmp;
1072  }
1073 # else
1074  btScalar *A_i1 = A+i1*nskip;
1075  btScalar *A_i2 = A+i2*nskip;
1076  for (int k = 0; k < i1; ++k) {
1077  btScalar tmp = A_i1[k];
1078  A_i1[k] = A_i2[k];
1079  A_i2[k] = tmp;
1080  }
1081  btScalar *A_i = A_i1 + nskip;
1082  for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
1083  btScalar tmp = A_i2[i];
1084  A_i2[i] = A_i[i1];
1085  A_i[i1] = tmp;
1086  }
1087  {
1088  btScalar tmp = A_i1[i1];
1089  A_i1[i1] = A_i2[i2];
1090  A_i2[i2] = tmp;
1091  }
1092  btScalar *A_j = A_i2 + nskip;
1093  for (int j=i2+1; j<n; A_j+=nskip, ++j) {
1094  btScalar tmp = A_j[i1];
1095  A_j[i1] = A_j[i2];
1096  A_j[i2] = tmp;
1097  }
1098 # endif
1099 }
1100 
1101 
1102 // swap two indexes in the n*n LCP problem. i1 must be <= i2.
1103 
1104 static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
1105  btScalar *hi, int *p, bool *state, int *findex,
1106  int n, int i1, int i2, int nskip,
1107  int do_fast_row_swaps)
1108 {
1109  btScalar tmpr;
1110  int tmpi;
1111  bool tmpb;
1112  btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
1113  if (i1==i2) return;
1114 
1115  btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
1116 
1117  tmpr = x[i1];
1118  x[i1] = x[i2];
1119  x[i2] = tmpr;
1120 
1121  tmpr = b[i1];
1122  b[i1] = b[i2];
1123  b[i2] = tmpr;
1124 
1125  tmpr = w[i1];
1126  w[i1] = w[i2];
1127  w[i2] = tmpr;
1128 
1129  tmpr = lo[i1];
1130  lo[i1] = lo[i2];
1131  lo[i2] = tmpr;
1132 
1133  tmpr = hi[i1];
1134  hi[i1] = hi[i2];
1135  hi[i2] = tmpr;
1136 
1137  tmpi = p[i1];
1138  p[i1] = p[i2];
1139  p[i2] = tmpi;
1140 
1141  tmpb = state[i1];
1142  state[i1] = state[i2];
1143  state[i2] = tmpb;
1144 
1145  if (findex) {
1146  tmpi = findex[i1];
1147  findex[i1] = findex[i2];
1148  findex[i2] = tmpi;
1149  }
1150 }
1151 
1152 
1153 
1154 
1155 //***************************************************************************
1156 // btLCP manipulator object. this represents an n*n LCP problem.
1157 //
1158 // two index sets C and N are kept. each set holds a subset of
1159 // the variable indexes 0..n-1. an index can only be in one set.
1160 // initially both sets are empty.
1161 //
1162 // the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
1163 
1164 //***************************************************************************
1165 // fast implementation of btLCP. see the above definition of btLCP for
1166 // interface comments.
1167 //
1168 // `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
1169 // permuted as the other vectors/matrices are permuted.
1170 //
1171 // A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
1172 // contiguous indexes. the don't-care indexes follow N.
1173 //
1174 // an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
1175 // added or removed from the set C the factorization is updated.
1176 // thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
1177 // the leading dimension of the matrix L is always `nskip'.
1178 //
1179 // at the start there may be other indexes that are unbounded but are not
1180 // included in `nub'. btLCP will permute the matrix so that absolutely all
1181 // unbounded vectors are at the start. thus there may be some initial
1182 // permutation.
1183 //
1184 // the algorithms here assume certain patterns, particularly with respect to
1185 // index transfer.
1186 
1187 #ifdef btLCP_FAST
1188 
1189 struct btLCP
1190 {
1191  const int m_n;
1192  const int m_nskip;
1193  int m_nub;
1194  int m_nC, m_nN; // size of each index set
1195  BTATYPE const m_A; // A rows
1196  btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi; // permuted LCP problem data
1197  btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
1198  btScalar *const m_Dell, *const m_ell, *const m_tmp;
1199  bool *const m_state;
1200  int *const m_findex, *const m_p, *const m_C;
1201 
1202  btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
1203  btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
1204  btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
1205  bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
1206  int getNub() const { return m_nub; }
1207  void transfer_i_to_C (int i);
1208  void transfer_i_to_N (int i) { m_nN++; } // because we can assume C and N span 1:i-1
1209  void transfer_i_from_N_to_C (int i);
1211  int numC() const { return m_nC; }
1212  int numN() const { return m_nN; }
1213  int indexC (int i) const { return i; }
1214  int indexN (int i) const { return i+m_nC; }
1215  btScalar Aii (int i) const { return BTAROW(i)[i]; }
1216  btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
1217  btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
1219  void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
1222  void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
1223  void unpermute();
1224 };
1225 
1226 
1227 btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
1228  btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
1229  btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
1230  bool *_state, int *_findex, int *p, int *c, btScalar **Arows):
1231  m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
1232 # ifdef BTROWPTRS
1233  m_A(Arows),
1234 #else
1235  m_A(_Adata),
1236 #endif
1237  m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
1238  m_L(l), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
1239  m_state(_state), m_findex(_findex), m_p(p), m_C(c)
1240 {
1241  {
1242  btSetZero (m_x,m_n);
1243  }
1244 
1245  {
1246 # ifdef BTROWPTRS
1247  // make matrix row pointers
1248  btScalar *aptr = _Adata;
1249  BTATYPE A = m_A;
1250  const int n = m_n, nskip = m_nskip;
1251  for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
1252 # endif
1253  }
1254 
1255  {
1256  int *p = m_p;
1257  const int n = m_n;
1258  for (int k=0; k<n; ++k) p[k]=k; // initially unpermuted
1259  }
1260 
1261  /*
1262  // for testing, we can do some random swaps in the area i > nub
1263  {
1264  const int n = m_n;
1265  const int nub = m_nub;
1266  if (nub < n) {
1267  for (int k=0; k<100; k++) {
1268  int i1,i2;
1269  do {
1270  i1 = dRandInt(n-nub)+nub;
1271  i2 = dRandInt(n-nub)+nub;
1272  }
1273  while (i1 > i2);
1274  //printf ("--> %d %d\n",i1,i2);
1275  btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
1276  }
1277  }
1278  */
1279 
1280  // permute the problem so that *all* the unbounded variables are at the
1281  // start, i.e. look for unbounded variables not included in `nub'. we can
1282  // potentially push up `nub' this way and get a bigger initial factorization.
1283  // note that when we swap rows/cols here we must not just swap row pointers,
1284  // as the initial factorization relies on the data being all in one chunk.
1285  // variables that have findex >= 0 are *not* considered to be unbounded even
1286  // if lo=-inf and hi=inf - this is because these limits may change during the
1287  // solution process.
1288 
1289  {
1290  int *findex = m_findex;
1291  btScalar *lo = m_lo, *hi = m_hi;
1292  const int n = m_n;
1293  for (int k = m_nub; k<n; ++k) {
1294  if (findex && findex[k] >= 0) continue;
1295  if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
1296  btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
1297  m_nub++;
1298  }
1299  }
1300  }
1301 
1302  // if there are unbounded variables at the start, factorize A up to that
1303  // point and solve for x. this puts all indexes 0..nub-1 into C.
1304  if (m_nub > 0) {
1305  const int nub = m_nub;
1306  {
1307  btScalar *Lrow = m_L;
1308  const int nskip = m_nskip;
1309  for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
1310  }
1311  btFactorLDLT (m_L,m_d,nub,m_nskip);
1312  memcpy (m_x,m_b,nub*sizeof(btScalar));
1313  btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
1314  btSetZero (m_w,nub);
1315  {
1316  int *C = m_C;
1317  for (int k=0; k<nub; ++k) C[k] = k;
1318  }
1319  m_nC = nub;
1320  }
1321 
1322  // permute the indexes > nub such that all findex variables are at the end
1323  if (m_findex) {
1324  const int nub = m_nub;
1325  int *findex = m_findex;
1326  int num_at_end = 0;
1327  for (int k=m_n-1; k >= nub; k--) {
1328  if (findex[k] >= 0) {
1329  btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
1330  num_at_end++;
1331  }
1332  }
1333  }
1334 
1335  // print info about indexes
1336  /*
1337  {
1338  const int n = m_n;
1339  const int nub = m_nub;
1340  for (int k=0; k<n; k++) {
1341  if (k<nub) printf ("C");
1342  else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
1343  else printf (".");
1344  }
1345  printf ("\n");
1346  }
1347  */
1348 }
1349 
1350 
1352 {
1353  {
1354  if (m_nC > 0) {
1355  // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
1356  {
1357  const int nC = m_nC;
1358  btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
1359  for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
1360  }
1361  const int nC = m_nC;
1362  m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
1363  }
1364  else {
1365  m_d[0] = btRecip (BTAROW(i)[i]);
1366  }
1367 
1369 
1370  const int nC = m_nC;
1371  m_C[nC] = nC;
1372  m_nC = nC + 1; // nC value is outdated after this line
1373  }
1374 
1375 }
1376 
1377 
1379 {
1380  {
1381  if (m_nC > 0) {
1382  {
1383  btScalar *const aptr = BTAROW(i);
1384  btScalar *Dell = m_Dell;
1385  const int *C = m_C;
1386 # ifdef BTNUB_OPTIMIZATIONS
1387  // if nub>0, initial part of aptr unpermuted
1388  const int nub = m_nub;
1389  int j=0;
1390  for ( ; j<nub; ++j) Dell[j] = aptr[j];
1391  const int nC = m_nC;
1392  for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
1393 # else
1394  const int nC = m_nC;
1395  for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
1396 # endif
1397  }
1399  {
1400  const int nC = m_nC;
1401  btScalar *const Ltgt = m_L + nC*m_nskip;
1402  btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
1403  for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
1404  }
1405  const int nC = m_nC;
1406  m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
1407  }
1408  else {
1409  m_d[0] = btRecip (BTAROW(i)[i]);
1410  }
1411 
1413 
1414  const int nC = m_nC;
1415  m_C[nC] = nC;
1416  m_nN--;
1417  m_nC = nC + 1; // nC value is outdated after this line
1418  }
1419 
1420  // @@@ TO DO LATER
1421  // if we just finish here then we'll go back and re-solve for
1422  // delta_x. but actually we can be more efficient and incrementally
1423  // update delta_x here. but if we do this, we wont have ell and Dell
1424  // to use in updating the factorization later.
1425 
1426 }
1427 
1428 void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
1429 {
1430  btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
1431  if (r >= n-1) return;
1432  if (r > 0) {
1433  {
1434  const size_t move_size = (n-r-1)*sizeof(btScalar);
1435  btScalar *Adst = A + r;
1436  for (int i=0; i<r; Adst+=nskip,++i) {
1437  btScalar *Asrc = Adst + 1;
1438  memmove (Adst,Asrc,move_size);
1439  }
1440  }
1441  {
1442  const size_t cpy_size = r*sizeof(btScalar);
1443  btScalar *Adst = A + r * nskip;
1444  for (int i=r; i<(n-1); ++i) {
1445  btScalar *Asrc = Adst + nskip;
1446  memcpy (Adst,Asrc,cpy_size);
1447  Adst = Asrc;
1448  }
1449  }
1450  }
1451  {
1452  const size_t cpy_size = (n-r-1)*sizeof(btScalar);
1453  btScalar *Adst = A + r * (nskip + 1);
1454  for (int i=r; i<(n-1); ++i) {
1455  btScalar *Asrc = Adst + (nskip + 1);
1456  memcpy (Adst,Asrc,cpy_size);
1457  Adst = Asrc - 1;
1458  }
1459  }
1460 }
1461 
1462 
1463 
1464 
1465 void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
1466 {
1467  btAssert (L && d && a && n > 0 && nskip >= n);
1468 
1469  if (n < 2) return;
1470  scratch.resize(2*nskip);
1471  btScalar *W1 = &scratch[0];
1472 
1473  btScalar *W2 = W1 + nskip;
1474 
1475  W1[0] = btScalar(0.0);
1476  W2[0] = btScalar(0.0);
1477  for (int j=1; j<n; ++j) {
1478  W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
1479  }
1480  btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
1481  btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
1482 
1483  btScalar alpha1 = btScalar(1.0);
1484  btScalar alpha2 = btScalar(1.0);
1485 
1486  {
1487  btScalar dee = d[0];
1488  btScalar alphanew = alpha1 + (W11*W11)*dee;
1489  btAssert(alphanew != btScalar(0.0));
1490  dee /= alphanew;
1491  btScalar gamma1 = W11 * dee;
1492  dee *= alpha1;
1493  alpha1 = alphanew;
1494  alphanew = alpha2 - (W21*W21)*dee;
1495  dee /= alphanew;
1496  //btScalar gamma2 = W21 * dee;
1497  alpha2 = alphanew;
1498  btScalar k1 = btScalar(1.0) - W21*gamma1;
1499  btScalar k2 = W21*gamma1*W11 - W21;
1500  btScalar *ll = L + nskip;
1501  for (int p=1; p<n; ll+=nskip, ++p) {
1502  btScalar Wp = W1[p];
1503  btScalar ell = *ll;
1504  W1[p] = Wp - W11*ell;
1505  W2[p] = k1*Wp + k2*ell;
1506  }
1507  }
1508 
1509  btScalar *ll = L + (nskip + 1);
1510  for (int j=1; j<n; ll+=nskip+1, ++j) {
1511  btScalar k1 = W1[j];
1512  btScalar k2 = W2[j];
1513 
1514  btScalar dee = d[j];
1515  btScalar alphanew = alpha1 + (k1*k1)*dee;
1516  btAssert(alphanew != btScalar(0.0));
1517  dee /= alphanew;
1518  btScalar gamma1 = k1 * dee;
1519  dee *= alpha1;
1520  alpha1 = alphanew;
1521  alphanew = alpha2 - (k2*k2)*dee;
1522  dee /= alphanew;
1523  btScalar gamma2 = k2 * dee;
1524  dee *= alpha2;
1525  d[j] = dee;
1526  alpha2 = alphanew;
1527 
1528  btScalar *l = ll + nskip;
1529  for (int p=j+1; p<n; l+=nskip, ++p) {
1530  btScalar ell = *l;
1531  btScalar Wp = W1[p] - k1 * ell;
1532  ell += gamma1 * Wp;
1533  W1[p] = Wp;
1534  Wp = W2[p] - k2 * ell;
1535  ell -= gamma2 * Wp;
1536  W2[p] = Wp;
1537  *l = ell;
1538  }
1539  }
1540 }
1541 
1542 
1543 #define _BTGETA(i,j) (A[i][j])
1544 //#define _GETA(i,j) (A[(i)*nskip+(j)])
1545 #define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
1546 
1547 inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
1548 {
1549  return nskip * 2 * sizeof(btScalar);
1550 }
1551 
1552 
1553 void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
1554  int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
1555 {
1556  btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
1557  n1 >= n2 && nskip >= n1);
1558  #ifdef BT_DEBUG
1559  for (int i=0; i<n2; ++i)
1560  btAssert(p[i] >= 0 && p[i] < n1);
1561  #endif
1562 
1563  if (r==n2-1) {
1564  return; // deleting last row/col is easy
1565  }
1566  else {
1567  size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
1568  btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
1569  scratch.resize(nskip * 2+n2);
1570  btScalar *tmp = &scratch[0];
1571  if (r==0) {
1572  btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
1573  const int p_0 = p[0];
1574  for (int i=0; i<n2; ++i) {
1575  a[i] = -BTGETA(p[i],p_0);
1576  }
1577  a[0] += btScalar(1.0);
1578  btLDLTAddTL (L,d,a,n2,nskip,scratch);
1579  }
1580  else {
1581  btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
1582  {
1583  btScalar *Lcurr = L + r*nskip;
1584  for (int i=0; i<r; ++Lcurr, ++i) {
1585  btAssert(d[i] != btScalar(0.0));
1586  t[i] = *Lcurr / d[i];
1587  }
1588  }
1589  btScalar *a = t + r;
1590  {
1591  btScalar *Lcurr = L + r*nskip;
1592  const int *pp_r = p + r, p_r = *pp_r;
1593  const int n2_minus_r = n2-r;
1594  for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
1595  a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
1596  }
1597  }
1598  a[0] += btScalar(1.0);
1599  btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
1600  }
1601  }
1602 
1603  // snip out row/column r from L and d
1604  btRemoveRowCol (L,n2,nskip,r);
1605  if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
1606 }
1607 
1608 
1610 {
1611  {
1612  int *C = m_C;
1613  // remove a row/column from the factorization, and adjust the
1614  // indexes (black magic!)
1615  int last_idx = -1;
1616  const int nC = m_nC;
1617  int j = 0;
1618  for ( ; j<nC; ++j) {
1619  if (C[j]==nC-1) {
1620  last_idx = j;
1621  }
1622  if (C[j]==i) {
1623  btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
1624  int k;
1625  if (last_idx == -1) {
1626  for (k=j+1 ; k<nC; ++k) {
1627  if (C[k]==nC-1) {
1628  break;
1629  }
1630  }
1631  btAssert (k < nC);
1632  }
1633  else {
1634  k = last_idx;
1635  }
1636  C[k] = C[j];
1637  if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
1638  break;
1639  }
1640  }
1641  btAssert (j < nC);
1642 
1644 
1645  m_nN++;
1646  m_nC = nC - 1; // nC value is outdated after this line
1647  }
1648 
1649 }
1650 
1651 
1653 {
1654  // we could try to make this matrix-vector multiplication faster using
1655  // outer product matrix tricks, e.g. with the dMultidotX() functions.
1656  // but i tried it and it actually made things slower on random 100x100
1657  // problems because of the overhead involved. so we'll stick with the
1658  // simple method for now.
1659  const int nC = m_nC;
1660  btScalar *ptgt = p + nC;
1661  const int nN = m_nN;
1662  for (int i=0; i<nN; ++i) {
1663  ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
1664  }
1665 }
1666 
1667 
1668 void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
1669 {
1670  const int nC = m_nC;
1671  btScalar *aptr = BTAROW(i) + nC;
1672  btScalar *ptgt = p + nC;
1673  if (sign > 0) {
1674  const int nN = m_nN;
1675  for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
1676  }
1677  else {
1678  const int nN = m_nN;
1679  for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
1680  }
1681 }
1682 
1684 {
1685  const int nC = m_nC;
1686  for (int i=0; i<nC; ++i) {
1687  p[i] += s*q[i];
1688  }
1689 }
1690 
1692 {
1693  const int nC = m_nC;
1694  btScalar *ptgt = p + nC, *qsrc = q + nC;
1695  const int nN = m_nN;
1696  for (int i=0; i<nN; ++i) {
1697  ptgt[i] += s*qsrc[i];
1698  }
1699 }
1700 
1701 void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
1702 {
1703  // the `Dell' and `ell' that are computed here are saved. if index i is
1704  // later added to the factorization then they can be reused.
1705  //
1706  // @@@ question: do we need to solve for entire delta_x??? yes, but
1707  // only if an x goes below 0 during the step.
1708 
1709  if (m_nC > 0) {
1710  {
1711  btScalar *Dell = m_Dell;
1712  int *C = m_C;
1713  btScalar *aptr = BTAROW(i);
1714 # ifdef BTNUB_OPTIMIZATIONS
1715  // if nub>0, initial part of aptr[] is guaranteed unpermuted
1716  const int nub = m_nub;
1717  int j=0;
1718  for ( ; j<nub; ++j) Dell[j] = aptr[j];
1719  const int nC = m_nC;
1720  for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
1721 # else
1722  const int nC = m_nC;
1723  for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
1724 # endif
1725  }
1727  {
1728  btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
1729  const int nC = m_nC;
1730  for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
1731  }
1732 
1733  if (!only_transfer) {
1734  btScalar *tmp = m_tmp, *ell = m_ell;
1735  {
1736  const int nC = m_nC;
1737  for (int j=0; j<nC; ++j) tmp[j] = ell[j];
1738  }
1739  btSolveL1T (m_L,tmp,m_nC,m_nskip);
1740  if (dir > 0) {
1741  int *C = m_C;
1742  btScalar *tmp = m_tmp;
1743  const int nC = m_nC;
1744  for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
1745  } else {
1746  int *C = m_C;
1747  btScalar *tmp = m_tmp;
1748  const int nC = m_nC;
1749  for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
1750  }
1751  }
1752  }
1753 }
1754 
1755 
1757 {
1758  // now we have to un-permute x and w
1759  {
1760  memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
1761  btScalar *x = m_x, *tmp = m_tmp;
1762  const int *p = m_p;
1763  const int n = m_n;
1764  for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
1765  }
1766  {
1767  memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
1768  btScalar *w = m_w, *tmp = m_tmp;
1769  const int *p = m_p;
1770  const int n = m_n;
1771  for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
1772  }
1773 }
1774 
1775 #endif // btLCP_FAST
1776 
1777 
1778 //***************************************************************************
1779 // an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
1780 
1782  btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
1783 {
1784  s_error = false;
1785 
1786 // printf("btSolveDantzigLCP n=%d\n",n);
1787  btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
1788  btAssert(outer_w);
1789 
1790 #ifdef BT_DEBUG
1791  {
1792  // check restrictions on lo and hi
1793  for (int k=0; k<n; ++k)
1794  btAssert (lo[k] <= 0 && hi[k] >= 0);
1795  }
1796 # endif
1797 
1798 
1799  // if all the variables are unbounded then we can just factor, solve,
1800  // and return
1801  if (nub >= n)
1802  {
1803 
1804 
1805  int nskip = (n);
1806  btFactorLDLT (A, outer_w, n, nskip);
1807  btSolveLDLT (A, outer_w, b, n, nskip);
1808  memcpy (x, b, n*sizeof(btScalar));
1809 
1810  return !s_error;
1811  }
1812 
1813  const int nskip = (n);
1814  scratchMem.L.resize(n*nskip);
1815 
1816  scratchMem.d.resize(n);
1817 
1818  btScalar *w = outer_w;
1819  scratchMem.delta_w.resize(n);
1820  scratchMem.delta_x.resize(n);
1821  scratchMem.Dell.resize(n);
1822  scratchMem.ell.resize(n);
1823  scratchMem.Arows.resize(n);
1824  scratchMem.p.resize(n);
1825  scratchMem.C.resize(n);
1826 
1827  // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
1828  scratchMem.state.resize(n);
1829 
1830 
1831  // create LCP object. note that tmp is set to delta_w to save space, this
1832  // optimization relies on knowledge of how tmp is used, so be careful!
1833  btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
1834  int adj_nub = lcp.getNub();
1835 
1836  // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
1837  // LCP conditions then i is added to the appropriate index set. otherwise
1838  // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
1839  // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
1840  // while driving x(i) we maintain the LCP conditions on the other variables
1841  // 0..i-1. we do this by watching out for other x(i),w(i) values going
1842  // outside the valid region, and then switching them between index sets
1843  // when that happens.
1844 
1845  bool hit_first_friction_index = false;
1846  for (int i=adj_nub; i<n; ++i)
1847  {
1848  s_error = false;
1849  // the index i is the driving index and indexes i+1..n-1 are "dont care",
1850  // i.e. when we make changes to the system those x's will be zero and we
1851  // don't care what happens to those w's. in other words, we only consider
1852  // an (i+1)*(i+1) sub-problem of A*x=b+w.
1853 
1854  // if we've hit the first friction index, we have to compute the lo and
1855  // hi values based on the values of x already computed. we have been
1856  // permuting the indexes, so the values stored in the findex vector are
1857  // no longer valid. thus we have to temporarily unpermute the x vector.
1858  // for the purposes of this computation, 0*infinity = 0 ... so if the
1859  // contact constraint's normal force is 0, there should be no tangential
1860  // force applied.
1861 
1862  if (!hit_first_friction_index && findex && findex[i] >= 0) {
1863  // un-permute x into delta_w, which is not being used at the moment
1864  for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
1865 
1866  // set lo and hi values
1867  for (int k=i; k<n; ++k) {
1868  btScalar wfk = scratchMem.delta_w[findex[k]];
1869  if (wfk == 0) {
1870  hi[k] = 0;
1871  lo[k] = 0;
1872  }
1873  else {
1874  hi[k] = btFabs (hi[k] * wfk);
1875  lo[k] = -hi[k];
1876  }
1877  }
1878  hit_first_friction_index = true;
1879  }
1880 
1881  // thus far we have not even been computing the w values for indexes
1882  // greater than i, so compute w[i] now.
1883  w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
1884 
1885  // if lo=hi=0 (which can happen for tangential friction when normals are
1886  // 0) then the index will be assigned to set N with some state. however,
1887  // set C's line has zero size, so the index will always remain in set N.
1888  // with the "normal" switching logic, if w changed sign then the index
1889  // would have to switch to set C and then back to set N with an inverted
1890  // state. this is pointless, and also computationally expensive. to
1891  // prevent this from happening, we use the rule that indexes with lo=hi=0
1892  // will never be checked for set changes. this means that the state for
1893  // these indexes may be incorrect, but that doesn't matter.
1894 
1895  // see if x(i),w(i) is in a valid region
1896  if (lo[i]==0 && w[i] >= 0) {
1897  lcp.transfer_i_to_N (i);
1898  scratchMem.state[i] = false;
1899  }
1900  else if (hi[i]==0 && w[i] <= 0) {
1901  lcp.transfer_i_to_N (i);
1902  scratchMem.state[i] = true;
1903  }
1904  else if (w[i]==0) {
1905  // this is a degenerate case. by the time we get to this test we know
1906  // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
1907  // and similarly that hi > 0. this means that the line segment
1908  // corresponding to set C is at least finite in extent, and we are on it.
1909  // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
1910  lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
1911 
1912  lcp.transfer_i_to_C (i);
1913  }
1914  else {
1915  // we must push x(i) and w(i)
1916  for (;;) {
1917  int dir;
1918  btScalar dirf;
1919  // find direction to push on x(i)
1920  if (w[i] <= 0) {
1921  dir = 1;
1922  dirf = btScalar(1.0);
1923  }
1924  else {
1925  dir = -1;
1926  dirf = btScalar(-1.0);
1927  }
1928 
1929  // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
1930  lcp.solve1 (&scratchMem.delta_x[0],i,dir);
1931 
1932  // note that delta_x[i] = dirf, but we wont bother to set it
1933 
1934  // compute: delta_w = A*delta_x ... note we only care about
1935  // delta_w(N) and delta_w(i), the rest is ignored
1936  lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
1937  lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
1938  scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
1939 
1940  // find largest step we can take (size=s), either to drive x(i),w(i)
1941  // to the valid LCP region or to drive an already-valid variable
1942  // outside the valid region.
1943 
1944  int cmd = 1; // index switching command
1945  int si = 0; // si = index to switch if cmd>3
1946  btScalar s = -w[i]/scratchMem.delta_w[i];
1947  if (dir > 0) {
1948  if (hi[i] < BT_INFINITY) {
1949  btScalar s2 = (hi[i]-x[i])*dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
1950  if (s2 < s) {
1951  s = s2;
1952  cmd = 3;
1953  }
1954  }
1955  }
1956  else {
1957  if (lo[i] > -BT_INFINITY) {
1958  btScalar s2 = (lo[i]-x[i])*dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
1959  if (s2 < s) {
1960  s = s2;
1961  cmd = 2;
1962  }
1963  }
1964  }
1965 
1966  {
1967  const int numN = lcp.numN();
1968  for (int k=0; k < numN; ++k) {
1969  const int indexN_k = lcp.indexN(k);
1970  if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
1971  // don't bother checking if lo=hi=0
1972  if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
1973  btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
1974  if (s2 < s) {
1975  s = s2;
1976  cmd = 4;
1977  si = indexN_k;
1978  }
1979  }
1980  }
1981  }
1982 
1983  {
1984  const int numC = lcp.numC();
1985  for (int k=adj_nub; k < numC; ++k) {
1986  const int indexC_k = lcp.indexC(k);
1987  if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
1988  btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
1989  if (s2 < s) {
1990  s = s2;
1991  cmd = 5;
1992  si = indexC_k;
1993  }
1994  }
1995  if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
1996  btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
1997  if (s2 < s) {
1998  s = s2;
1999  cmd = 6;
2000  si = indexC_k;
2001  }
2002  }
2003  }
2004  }
2005 
2006  //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
2007  // "C->NL","C->NH"};
2008  //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
2009 
2010  // if s <= 0 then we've got a problem. if we just keep going then
2011  // we're going to get stuck in an infinite loop. instead, just cross
2012  // our fingers and exit with the current solution.
2013  if (s <= btScalar(0.0))
2014  {
2015 // printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
2016  if (i < n) {
2017  btSetZero (x+i,n-i);
2018  btSetZero (w+i,n-i);
2019  }
2020  s_error = true;
2021  break;
2022  }
2023 
2024  // apply x = x + s * delta_x
2025  lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
2026  x[i] += s * dirf;
2027 
2028  // apply w = w + s * delta_w
2029  lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
2030  w[i] += s * scratchMem.delta_w[i];
2031 
2032 // void *tmpbuf;
2033  // switch indexes between sets if necessary
2034  switch (cmd) {
2035  case 1: // done
2036  w[i] = 0;
2037  lcp.transfer_i_to_C (i);
2038  break;
2039  case 2: // done
2040  x[i] = lo[i];
2041  scratchMem.state[i] = false;
2042  lcp.transfer_i_to_N (i);
2043  break;
2044  case 3: // done
2045  x[i] = hi[i];
2046  scratchMem.state[i] = true;
2047  lcp.transfer_i_to_N (i);
2048  break;
2049  case 4: // keep going
2050  w[si] = 0;
2051  lcp.transfer_i_from_N_to_C (si);
2052  break;
2053  case 5: // keep going
2054  x[si] = lo[si];
2055  scratchMem.state[si] = false;
2056  lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
2057  break;
2058  case 6: // keep going
2059  x[si] = hi[si];
2060  scratchMem.state[si] = true;
2061  lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
2062  break;
2063  }
2064 
2065  if (cmd <= 3) break;
2066  } // for (;;)
2067  } // else
2068 
2069  if (s_error)
2070  {
2071  break;
2072  }
2073  } // for (int i=adj_nub; i<n; ++i)
2074 
2075  lcp.unpermute();
2076 
2077 
2078  return !s_error;
2079 }
2080 
static T sum(const btAlignedObjectArray< T > &items)
void btRemoveRowCol(btScalar *A, int n, int nskip, int r)
void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray< btScalar > &scratch)
void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1)
#define BTGETA(i, j)
btAlignedObjectArray< btScalar * > Arows
Definition: btDantzigLCP.h:65
int *const m_findex
void pN_plusequals_ANi(btScalar *p, int i, int sign=1)
#define btRecip(x)
Definition: btScalar.h:511
btAlignedObjectArray< btScalar > delta_w
Definition: btDantzigLCP.h:61
#define btAssert(x)
Definition: btScalar.h:131
const int m_nskip
btScalar AiN_times_qN(int i, btScalar *q) const
void transfer_i_from_N_to_C(int i)
int indexC(int i) const
void unpermute()
int numC() const
void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d, int n1, int n2, int r, int nskip, btAlignedObjectArray< btScalar > &scratch)
btScalar *const *const *const m_w
btScalar Aii(int i) const
btScalar *const *const m_d
btScalar *const m_Dell
static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo, btScalar *hi, int *p, bool *state, int *findex, int n, int i1, int i2, int nskip, int do_fast_row_swaps)
void solve1(btScalar *a, int i, int dir=1, int only_transfer=0)
btScalar *const *const m_ell
#define SIMDSQRT12
Definition: btScalar.h:509
#define BTROWPTRS
int indexN(int i) const
btScalar *const *const *const m_tmp
void btVectorScale(btScalar *a, const btScalar *d, int n)
btScalar *const *const m_b
bool s_error
btScalar *const *const *const *const *const m_hi
size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
void transfer_i_to_N(int i)
void pN_equals_ANC_times_qC(btScalar *p, btScalar *q)
int numN() const
btAlignedObjectArray< btScalar > m_scratch
Definition: btDantzigLCP.h:58
static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip, int do_fast_row_swaps)
const int m_n
int getNub() const
btAlignedObjectArray< btScalar > Dell
Definition: btDantzigLCP.h:63
void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q)
void btSetZero(T *a, int n)
Definition: btScalar.h:717
void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1)
#define BT_INFINITY
Definition: btScalar.h:383
void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
btScalar *const m_x
static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1)
btAlignedObjectArray< int > p
Definition: btDantzigLCP.h:66
btAlignedObjectArray< int > C
Definition: btDantzigLCP.h:67
static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1)
bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b, btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem)
void resize(int newsize, const T &fillData=T())
void transfer_i_from_C_to_N(int i, btAlignedObjectArray< btScalar > &scratch)
btScalar AiC_times_qC(int i, btScalar *q) const
btAlignedObjectArray< btScalar > ell
Definition: btDantzigLCP.h:64
btScalar *const m_L
btScalar *const *const *const *const m_lo
btAlignedObjectArray< btScalar > delta_x
Definition: btDantzigLCP.h:62
void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1)
btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w, btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d, btScalar *_Dell, btScalar *_ell, btScalar *_tmp, bool *_state, int *_findex, int *p, int *c, btScalar **Arows)
btAlignedObjectArray< btScalar > L
Definition: btDantzigLCP.h:59
int *const *const m_p
btAlignedObjectArray< btScalar > d
Definition: btDantzigLCP.h:60
void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q)
#define BTATYPE
BTATYPE const m_A
#define BTAROW(i)
bool *const m_state
btAlignedObjectArray< bool > state
Definition: btDantzigLCP.h:68
int *const *const *const m_C
void transfer_i_to_C(int i)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
btScalar btLargeDot(const btScalar *a, const btScalar *b, int n)
Definition: btScalar.h:728
btScalar btFabs(btScalar x)
Definition: btScalar.h:475