Bullet Collision Detection & Physics Library
btMultiBodyConstraint.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_MULTIBODY_CONSTRAINT_H
17 #define BT_MULTIBODY_CONSTRAINT_H
18 
19 #include "LinearMath/btScalar.h"
21 #include "btMultiBody.h"
22 
23 class btMultiBody;
24 struct btSolverInfo;
25 
27 
29 {
31  btAlignedObjectArray<btScalar> m_deltaVelocitiesUnitImpulse; //holds the joint-space response of the corresp. tree to the test impulse in each constraint space dimension
32  btAlignedObjectArray<btScalar> m_deltaVelocities; //holds joint-space vectors of all the constrained trees accumulating the effect of corrective impulses applied in SI
38 
39 };
40 
41 
43 {
44 protected:
45 
48  int m_linkA;
49  int m_linkB;
50 
51  int m_numRows;
55 
59 
60 
61  // warning: the data block lay out is not consistent for all constraints
62  // data block laid out as follows:
63  // cached impulses. (one per row.)
64  // jacobians. (interleaved, row1 body1 then row1 body2 then row2 body 1 etc)
65  // positions. (one per row.)
67 
68  void applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof);
69 
70  btScalar fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint,
72  btScalar* jacOrgA, btScalar* jacOrgB,
73  const btVector3& constraintNormalAng,
74 
75  const btVector3& constraintNormalLin,
76  const btVector3& posAworld, const btVector3& posBworld,
77  btScalar posError,
78  const btContactSolverInfo& infoGlobal,
79  btScalar lowerLimit, btScalar upperLimit,
80  bool angConstraint = false,
81 
82  btScalar relaxation = 1.f,
83  bool isFriction = false, btScalar desiredVelocity=0, btScalar cfmSlip=0);
84 
85 public:
86 
88 
89  btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral);
90  virtual ~btMultiBodyConstraint();
91 
92  void updateJacobianSizes();
93  void allocateJacobiansMultiDof();
94 
95  //many constraints have setFrameInB/setPivotInB. Will use 'getConstraintType' later.
96  virtual void setFrameInB(const btMatrix3x3& frameInB) {}
97  virtual void setPivotInB(const btVector3& pivotInB){}
98 
99  virtual void finalizeMultiDof()=0;
100 
101  virtual int getIslandIdA() const =0;
102  virtual int getIslandIdB() const =0;
103 
104  virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
106  const btContactSolverInfo& infoGlobal)=0;
107 
108  int getNumRows() const
109  {
110  return m_numRows;
111  }
112 
114  {
115  return m_bodyA;
116  }
118  {
119  return m_bodyB;
120  }
121 
122  int getLinkA() const
123  {
124  return m_linkA;
125  }
126  int getLinkB() const
127  {
128  return m_linkB;
129  }
130  void internalSetAppliedImpulse(int dof, btScalar appliedImpulse)
131  {
132  btAssert(dof>=0);
133  btAssert(dof < getNumRows());
134  m_data[dof] = appliedImpulse;
135 
136  }
137 
139  {
140  btAssert(dof>=0);
141  btAssert(dof < getNumRows());
142  return m_data[dof];
143  }
144  // current constraint position
145  // constraint is pos >= 0 for unilateral, or pos = 0 for bilateral
146  // NOTE: ignored position for friction rows.
147  btScalar getPosition(int row) const
148  {
149  return m_data[m_posOffset + row];
150  }
151 
152  void setPosition(int row, btScalar pos)
153  {
154  m_data[m_posOffset + row] = pos;
155  }
156 
157 
158  bool isUnilateral() const
159  {
160  return m_isUnilateral;
161  }
162 
163  // jacobian blocks.
164  // each of size 6 + num_links. (jacobian2 is null if no body2.)
165  // format: 3 'omega' coefficients, 3 'v' coefficients, then the 'qdot' coefficients.
166  btScalar* jacobianA(int row)
167  {
168  return &m_data[m_numRows + row * m_jacSizeBoth];
169  }
170  const btScalar* jacobianA(int row) const
171  {
172  return &m_data[m_numRows + (row * m_jacSizeBoth)];
173  }
174  btScalar* jacobianB(int row)
175  {
176  return &m_data[m_numRows + (row * m_jacSizeBoth) + m_jacSizeA];
177  }
178  const btScalar* jacobianB(int row) const
179  {
180  return &m_data[m_numRows + (row * m_jacSizeBoth) + m_jacSizeA];
181  }
182 
184  {
185  return m_maxAppliedImpulse;
186  }
188  {
189  m_maxAppliedImpulse = maxImp;
190  }
191 
192  virtual void debugDraw(class btIDebugDraw* drawer)=0;
193 
194  virtual void setGearRatio(btScalar ratio) {}
195  virtual void setGearAuxLink(int gearAuxLink) {}
196  virtual void setRelativePositionTarget(btScalar relPosTarget){}
197  virtual void setErp(btScalar erp){}
198 
199 
200 };
201 
202 #endif //BT_MULTIBODY_CONSTRAINT_H
203 
btScalar getMaxAppliedImpulse() const
btScalar * jacobianB(int row)
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...
btAlignedObjectArray< btScalar > scratch_r
btAlignedObjectArray< btScalar > m_deltaVelocities
btAlignedObjectArray< btSolverBody > * m_solverBodyPool
btScalar getAppliedImpulse(int dof)
virtual void setPivotInB(const btVector3 &pivotInB)
virtual void setGearRatio(btScalar ratio)
void internalSetAppliedImpulse(int dof, btScalar appliedImpulse)
#define btAssert(x)
Definition: btScalar.h:131
btScalar * jacobianA(int row)
virtual void setErp(btScalar erp)
btAlignedObjectArray< btMatrix3x3 > scratch_m
virtual void setRelativePositionTarget(btScalar relPosTarget)
btAlignedObjectArray< btScalar > m_deltaVelocitiesUnitImpulse
virtual void setFrameInB(const btMatrix3x3 &frameInB)
btScalar getPosition(int row) const
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations...
Definition: btIDebugDraw.h:29
virtual void setGearAuxLink(int gearAuxLink)
btAlignedObjectArray< btScalar > m_data
btAlignedObjectArray< btScalar > m_jacobians
const btScalar * jacobianA(int row) const
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
btAlignedObjectArray< btVector3 > scratch_v
void setPosition(int row, btScalar pos)
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:403
void setMaxAppliedImpulse(btScalar maxImp)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
Definition: btMatrix3x3.h:48
const btScalar * jacobianB(int row) const
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292