Bullet Collision Detection & Physics Library
btMultiBodyConstraint.cpp
Go to the documentation of this file.
3 #include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
4 
5 
6 
7 btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
8  :m_bodyA(bodyA),
9  m_bodyB(bodyB),
10  m_linkA(linkA),
11  m_linkB(linkB),
12  m_numRows(numRows),
13  m_jacSizeA(0),
14  m_jacSizeBoth(0),
15  m_isUnilateral(isUnilateral),
16  m_numDofsFinalized(-1),
17  m_maxAppliedImpulse(100)
18 {
19 
20 }
21 
23 {
24  if(m_bodyA)
25  {
26  m_jacSizeA = (6 + m_bodyA->getNumDofs());
27  }
28 
29  if(m_bodyB)
30  {
32  }
33  else
35 }
36 
38 {
40 
43 }
44 
46 {
47 }
48 
49 void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
50 {
51  for (int i = 0; i < ndof; ++i)
52  data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
53 }
54 
57  btScalar* jacOrgA, btScalar* jacOrgB,
58  const btVector3& constraintNormalAng,
59  const btVector3& constraintNormalLin,
60  const btVector3& posAworld, const btVector3& posBworld,
61  btScalar posError,
62  const btContactSolverInfo& infoGlobal,
63  btScalar lowerLimit, btScalar upperLimit,
64  bool angConstraint,
65  btScalar relaxation,
66  bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
67 {
68  solverConstraint.m_multiBodyA = m_bodyA;
69  solverConstraint.m_multiBodyB = m_bodyB;
70  solverConstraint.m_linkA = m_linkA;
71  solverConstraint.m_linkB = m_linkB;
72 
73  btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
74  btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
75 
76  btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
77  btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
78 
79  btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
80  btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
81 
82  btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
83  if (bodyA)
84  rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
85  if (bodyB)
86  rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
87 
88  if (multiBodyA)
89  {
90  if (solverConstraint.m_linkA<0)
91  {
92  rel_pos1 = posAworld - multiBodyA->getBasePos();
93  } else
94  {
95  rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
96  }
97 
98  const int ndofA = multiBodyA->getNumDofs() + 6;
99 
100  solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
101 
102  if (solverConstraint.m_deltaVelAindex <0)
103  {
104  solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
105  multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
106  data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
107  } else
108  {
109  btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
110  }
111 
112  //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
113  //resize..
114  solverConstraint.m_jacAindex = data.m_jacobians.size();
115  data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
116  //copy/determine
117  if(jacOrgA)
118  {
119  for (int i=0;i<ndofA;i++)
120  data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i];
121  }
122  else
123  {
124  btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
125  //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
126  multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
127  }
128 
129  //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
130  //resize..
131  data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
133  btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
134  //determine..
135  multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
136 
137  btVector3 torqueAxis0;
138  if (angConstraint) {
139  torqueAxis0 = constraintNormalAng;
140  }
141  else {
142  torqueAxis0 = rel_pos1.cross(constraintNormalLin);
143 
144  }
145  solverConstraint.m_relpos1CrossNormal = torqueAxis0;
146  solverConstraint.m_contactNormal1 = constraintNormalLin;
147  }
148  else //if(rb0)
149  {
150  btVector3 torqueAxis0;
151  if (angConstraint) {
152  torqueAxis0 = constraintNormalAng;
153  }
154  else {
155  torqueAxis0 = rel_pos1.cross(constraintNormalLin);
156  }
157  solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
158  solverConstraint.m_relpos1CrossNormal = torqueAxis0;
159  solverConstraint.m_contactNormal1 = constraintNormalLin;
160  }
161 
162  if (multiBodyB)
163  {
164  if (solverConstraint.m_linkB<0)
165  {
166  rel_pos2 = posBworld - multiBodyB->getBasePos();
167  } else
168  {
169  rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
170  }
171 
172  const int ndofB = multiBodyB->getNumDofs() + 6;
173 
174  solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
175  if (solverConstraint.m_deltaVelBindex <0)
176  {
177  solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
178  multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
179  data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
180  }
181 
182  //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
183  //resize..
184  solverConstraint.m_jacBindex = data.m_jacobians.size();
185  data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
186  //copy/determine..
187  if(jacOrgB)
188  {
189  for (int i=0;i<ndofB;i++)
190  data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i];
191  }
192  else
193  {
194  //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
195  multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
196  }
197 
198  //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
199  //resize..
202  btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
203  //determine..
204  multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v);
205 
206  btVector3 torqueAxis1;
207  if (angConstraint) {
208  torqueAxis1 = constraintNormalAng;
209  }
210  else {
211  torqueAxis1 = rel_pos2.cross(constraintNormalLin);
212  }
213  solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
214  solverConstraint.m_contactNormal2 = -constraintNormalLin;
215  }
216  else //if(rb1)
217  {
218  btVector3 torqueAxis1;
219  if (angConstraint) {
220  torqueAxis1 = constraintNormalAng;
221  }
222  else {
223  torqueAxis1 = rel_pos2.cross(constraintNormalLin);
224  }
225  solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
226  solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
227  solverConstraint.m_contactNormal2 = -constraintNormalLin;
228  }
229  {
230 
231  btVector3 vec;
232  btScalar denom0 = 0.f;
233  btScalar denom1 = 0.f;
234  btScalar* jacB = 0;
235  btScalar* jacA = 0;
236  btScalar* deltaVelA = 0;
237  btScalar* deltaVelB = 0;
238  int ndofA = 0;
239  //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
240  if (multiBodyA)
241  {
242  ndofA = multiBodyA->getNumDofs() + 6;
243  jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
244  deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
245  for (int i = 0; i < ndofA; ++i)
246  {
247  btScalar j = jacA[i] ;
248  btScalar l = deltaVelA[i];
249  denom0 += j*l;
250  }
251  }
252  else if(rb0)
253  {
254  vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
255  if (angConstraint) {
256  denom0 = constraintNormalAng.dot(solverConstraint.m_angularComponentA);
257  }
258  else {
259  denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
260  }
261  }
262  //
263  if (multiBodyB)
264  {
265  const int ndofB = multiBodyB->getNumDofs() + 6;
266  jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
267  deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
268  for (int i = 0; i < ndofB; ++i)
269  {
270  btScalar j = jacB[i] ;
271  btScalar l = deltaVelB[i];
272  denom1 += j*l;
273  }
274 
275  }
276  else if(rb1)
277  {
278  vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
279  if (angConstraint) {
280  denom1 = constraintNormalAng.dot(-solverConstraint.m_angularComponentB);
281  }
282  else {
283  denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
284  }
285  }
286 
287  //
288  btScalar d = denom0+denom1;
289  if (d>SIMD_EPSILON)
290  {
291  solverConstraint.m_jacDiagABInv = relaxation/(d);
292  }
293  else
294  {
295  //disable the constraint row to handle singularity/redundant constraint
296  solverConstraint.m_jacDiagABInv = 0.f;
297  }
298  }
299 
300 
301  //compute rhs and remaining solverConstraint fields
302  btScalar penetration = isFriction? 0 : posError;
303 
304  btScalar rel_vel = 0.f;
305  int ndofA = 0;
306  int ndofB = 0;
307  {
308  btVector3 vel1,vel2;
309  if (multiBodyA)
310  {
311  ndofA = multiBodyA->getNumDofs() + 6;
312  btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
313  for (int i = 0; i < ndofA ; ++i)
314  rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
315  }
316  else if(rb0)
317  {
318  rel_vel += rb0->getLinearVelocity().dot(solverConstraint.m_contactNormal1);
319  rel_vel += rb0->getAngularVelocity().dot(solverConstraint.m_relpos1CrossNormal);
320  }
321  if (multiBodyB)
322  {
323  ndofB = multiBodyB->getNumDofs() + 6;
324  btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
325  for (int i = 0; i < ndofB ; ++i)
326  rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
327 
328  }
329  else if(rb1)
330  {
331  rel_vel += rb1->getLinearVelocity().dot(solverConstraint.m_contactNormal2);
332  rel_vel += rb1->getAngularVelocity().dot(solverConstraint.m_relpos2CrossNormal);
333  }
334 
335  solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
336  }
337 
338 
340  /*
341  if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
342  {
343  solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
344 
345  if (solverConstraint.m_appliedImpulse)
346  {
347  if (multiBodyA)
348  {
349  btScalar impulse = solverConstraint.m_appliedImpulse;
350  btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
351  multiBodyA->applyDeltaVee(deltaV,impulse);
352  applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
353  } else
354  {
355  if (rb0)
356  bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
357  }
358  if (multiBodyB)
359  {
360  btScalar impulse = solverConstraint.m_appliedImpulse;
361  btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
362  multiBodyB->applyDeltaVee(deltaV,impulse);
363  applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
364  } else
365  {
366  if (rb1)
367  bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
368  }
369  }
370  } else
371  */
372 
373  solverConstraint.m_appliedImpulse = 0.f;
374  solverConstraint.m_appliedPushImpulse = 0.f;
375 
376  {
377 
378  btScalar positionalError = 0.f;
379  btScalar velocityError = desiredVelocity - rel_vel;// * damping;
380 
381 
382  btScalar erp = infoGlobal.m_erp2;
383 
384  //split impulse is not implemented yet for btMultiBody*
385  //if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
386  {
387  erp = infoGlobal.m_erp;
388  }
389 
390  positionalError = -penetration * erp/infoGlobal.m_timeStep;
391 
392  btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
393  btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
394 
395  //split impulse is not implemented yet for btMultiBody*
396 
397  // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
398  {
399  //combine position and velocity into rhs
400  solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
401  solverConstraint.m_rhsPenetration = 0.f;
402 
403  }
404  /*else
405  {
406  //split position and velocity into rhs and m_rhsPenetration
407  solverConstraint.m_rhs = velocityImpulse;
408  solverConstraint.m_rhsPenetration = penetrationImpulse;
409  }
410  */
411 
412  solverConstraint.m_cfm = 0.f;
413  solverConstraint.m_lowerLimit = lowerLimit;
414  solverConstraint.m_upperLimit = upperLimit;
415  }
416 
417  return rel_vel;
418 
419 }
btScalar getInvMass() const
Definition: btRigidBody.h:273
#define SIMD_EPSILON
Definition: btScalar.h:521
const btMultibodyLink & getLink(int index) const
Definition: btMultiBody.h:119
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...
btAlignedObjectArray< btScalar > scratch_r
btAlignedObjectArray< btScalar > m_deltaVelocities
const btVector3 & getAngularFactor() const
Definition: btRigidBody.h:504
btAlignedObjectArray< btSolverBody > * m_solverBodyPool
const T & at(int n) const
#define btAssert(x)
Definition: btScalar.h:131
btAlignedObjectArray< btMatrix3x3 > scratch_m
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:235
btAlignedObjectArray< btScalar > m_deltaVelocitiesUnitImpulse
int size() const
return the number of elements in the array
btVector3 & getOrigin()
Return the origin vector translation.
Definition: btTransform.h:117
void setCompanionId(int id)
Definition: btMultiBody.h:486
void fillConstraintJacobianMultiDof(int link, const btVector3 &contact_point, const btVector3 &normal_ang, const btVector3 &normal_lin, btScalar *jac, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m) const
const btVector3 & getAngularVelocity() const
Definition: btRigidBody.h:365
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
Definition: btVector3.h:389
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:62
btAlignedObjectArray< btScalar > m_data
btAlignedObjectArray< btScalar > m_jacobians
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
btAlignedObjectArray< btVector3 > scratch_v
void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v) const
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:108
int getCompanionId() const
Definition: btMultiBody.h:482
void resize(int newsize, const T &fillData=T())
btRigidBody * m_originalBody
Definition: btSolverBody.h:124
const btMatrix3x3 & getInvInertiaTensorWorld() const
Definition: btRigidBody.h:274
const btVector3 & getLinearVelocity() const
Definition: btRigidBody.h:362
const btTransform & getWorldTransform() const
Definition: btSolverBody.h:130
btMultiBodyConstraint(btMultiBody *bodyA, btMultiBody *bodyB, int linkA, int linkB, int numRows, bool isUnilateral)
btScalar fillMultiBodyConstraint(btMultiBodySolverConstraint &solverConstraint, btMultiBodyJacobianData &data, btScalar *jacOrgA, btScalar *jacOrgB, const btVector3 &constraintNormalAng, const btVector3 &constraintNormalLin, const btVector3 &posAworld, const btVector3 &posBworld, btScalar posError, const btContactSolverInfo &infoGlobal, btScalar lowerLimit, btScalar upperLimit, bool angConstraint=false, btScalar relaxation=1.f, bool isFriction=false, btScalar desiredVelocity=0, btScalar cfmSlip=0)
const btVector3 & getBasePos() const
Definition: btMultiBody.h:186
int getNumDofs() const
Definition: btMultiBody.h:165
void applyDeltaVee(btMultiBodyJacobianData &data, btScalar *delta_vee, btScalar impulse, int velocityIndex, int ndof)
const btScalar * getVelocityVector() const
Definition: btMultiBody.h:258
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292