Bullet Collision Detection & Physics Library
btJacobianEntry.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_JACOBIAN_ENTRY_H
17 #define BT_JACOBIAN_ENTRY_H
18 
19 #include "LinearMath/btMatrix3x3.h"
20 
21 
22 //notes:
23 // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
24 // which makes the btJacobianEntry memory layout 16 bytes
25 // if you only are interested in angular part, just feed massInvA and massInvB zero
26 
31 {
32 public:
34  //constraint between two different rigidbodies
36  const btMatrix3x3& world2A,
37  const btMatrix3x3& world2B,
38  const btVector3& rel_pos1,const btVector3& rel_pos2,
39  const btVector3& jointAxis,
40  const btVector3& inertiaInvA,
41  const btScalar massInvA,
42  const btVector3& inertiaInvB,
43  const btScalar massInvB)
44  :m_linearJointAxis(jointAxis)
45  {
46  m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
47  m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
48  m_0MinvJt = inertiaInvA * m_aJ;
49  m_1MinvJt = inertiaInvB * m_bJ;
50  m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
51 
52  btAssert(m_Adiag > btScalar(0.0));
53  }
54 
55  //angular constraint between two different rigidbodies
56  btJacobianEntry(const btVector3& jointAxis,
57  const btMatrix3x3& world2A,
58  const btMatrix3x3& world2B,
59  const btVector3& inertiaInvA,
60  const btVector3& inertiaInvB)
61  :m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
62  {
63  m_aJ= world2A*jointAxis;
64  m_bJ = world2B*-jointAxis;
65  m_0MinvJt = inertiaInvA * m_aJ;
66  m_1MinvJt = inertiaInvB * m_bJ;
67  m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
68 
69  btAssert(m_Adiag > btScalar(0.0));
70  }
71 
72  //angular constraint between two different rigidbodies
73  btJacobianEntry(const btVector3& axisInA,
74  const btVector3& axisInB,
75  const btVector3& inertiaInvA,
76  const btVector3& inertiaInvB)
77  : m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
78  , m_aJ(axisInA)
79  , m_bJ(-axisInB)
80  {
81  m_0MinvJt = inertiaInvA * m_aJ;
82  m_1MinvJt = inertiaInvB * m_bJ;
83  m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
84 
85  btAssert(m_Adiag > btScalar(0.0));
86  }
87 
88  //constraint on one rigidbody
90  const btMatrix3x3& world2A,
91  const btVector3& rel_pos1,const btVector3& rel_pos2,
92  const btVector3& jointAxis,
93  const btVector3& inertiaInvA,
94  const btScalar massInvA)
95  :m_linearJointAxis(jointAxis)
96  {
97  m_aJ= world2A*(rel_pos1.cross(jointAxis));
98  m_bJ = world2A*(rel_pos2.cross(-jointAxis));
99  m_0MinvJt = inertiaInvA * m_aJ;
100  m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
101  m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
102 
103  btAssert(m_Adiag > btScalar(0.0));
104  }
105 
106  btScalar getDiagonal() const { return m_Adiag; }
107 
108  // for two constraints on the same rigidbody (for example vehicle friction)
109  btScalar getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
110  {
111  const btJacobianEntry& jacA = *this;
112  btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
113  btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
114  return lin + ang;
115  }
116 
117 
118 
119  // for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
120  btScalar getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
121  {
122  const btJacobianEntry& jacA = *this;
124  btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
125  btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
126  btVector3 lin0 = massInvA * lin ;
127  btVector3 lin1 = massInvB * lin;
128  btVector3 sum = ang0+ang1+lin0+lin1;
129  return sum[0]+sum[1]+sum[2];
130  }
131 
132  btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
133  {
134  btVector3 linrel = linvelA - linvelB;
135  btVector3 angvela = angvelA * m_aJ;
136  btVector3 angvelb = angvelB * m_bJ;
137  linrel *= m_linearJointAxis;
138  angvela += angvelb;
139  angvela += linrel;
140  btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
141  return rel_vel2 + SIMD_EPSILON;
142  }
143 //private:
144 
150  //Optimization: can be stored in the w/last component of one of the vectors
152 
153 };
154 
155 #endif //BT_JACOBIAN_ENTRY_H
static T sum(const btAlignedObjectArray< T > &items)
#define SIMD_EPSILON
Definition: btScalar.h:521
Jacobian entry is an abstraction that allows to describe constraints it can be used in combination wi...
btJacobianEntry(const btVector3 &jointAxis, const btMatrix3x3 &world2A, const btMatrix3x3 &world2B, const btVector3 &inertiaInvA, const btVector3 &inertiaInvB)
#define btAssert(x)
Definition: btScalar.h:131
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:235
btScalar getNonDiagonal(const btJacobianEntry &jacB, const btScalar massInvA) const
btVector3 m_linearJointAxis
btJacobianEntry(const btMatrix3x3 &world2A, const btMatrix3x3 &world2B, const btVector3 &rel_pos1, const btVector3 &rel_pos2, const btVector3 &jointAxis, const btVector3 &inertiaInvA, const btScalar massInvA, const btVector3 &inertiaInvB, const btScalar massInvB)
btScalar getDiagonal() const
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
Definition: btVector3.h:389
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
btScalar getRelativeVelocity(const btVector3 &linvelA, const btVector3 &angvelA, const btVector3 &linvelB, const btVector3 &angvelB)
btScalar getNonDiagonal(const btJacobianEntry &jacB, const btScalar massInvA, const btScalar massInvB) const
btJacobianEntry(const btMatrix3x3 &world2A, const btVector3 &rel_pos1, const btVector3 &rel_pos2, const btVector3 &jointAxis, const btVector3 &inertiaInvA, const btScalar massInvA)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
Definition: btMatrix3x3.h:48
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
btJacobianEntry(const btVector3 &axisInA, const btVector3 &axisInB, const btVector3 &inertiaInvA, const btVector3 &inertiaInvB)